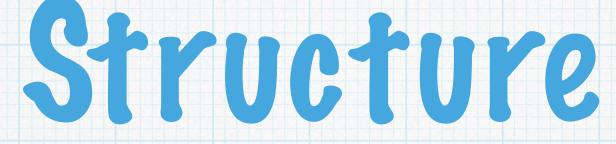
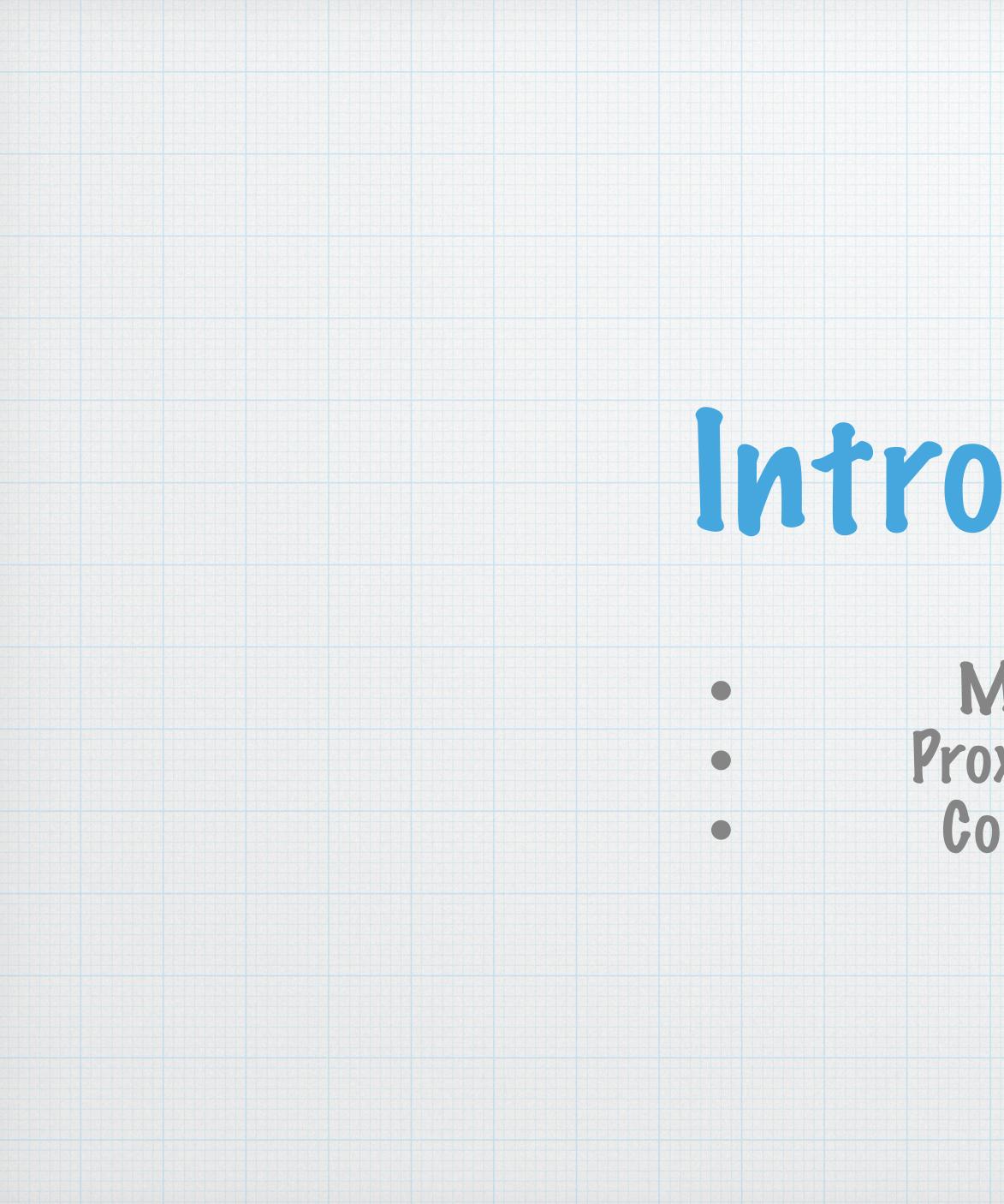
Multi agent Path Planning for Proximal Coverage of Agricultural farms

Final Presentation

Suhrudh. S 16-12-2022 Friday

1. Introduction 2. Multiple Cluster Coverage 3. Multi-agent Multiple Cluster Coverage 4. Hardware Experiments 5. Conclusion and Future Work





Introduction

Motivation Proximal Points Contribution

* Agriculture needs automation and technology.

* Use of advanced sensing in UAVs and UGVs allows us to perform perception tasks efficiently.

* Solve the bottle neck of approaching the biomass "proximally".

* Given such proximal points, exploit the environmental conditions to perform effective path planning



* Locations that an UAV can reach around a biomass safely without collision.

* Each cluster has a set of Proximal Points.

Proximal Points

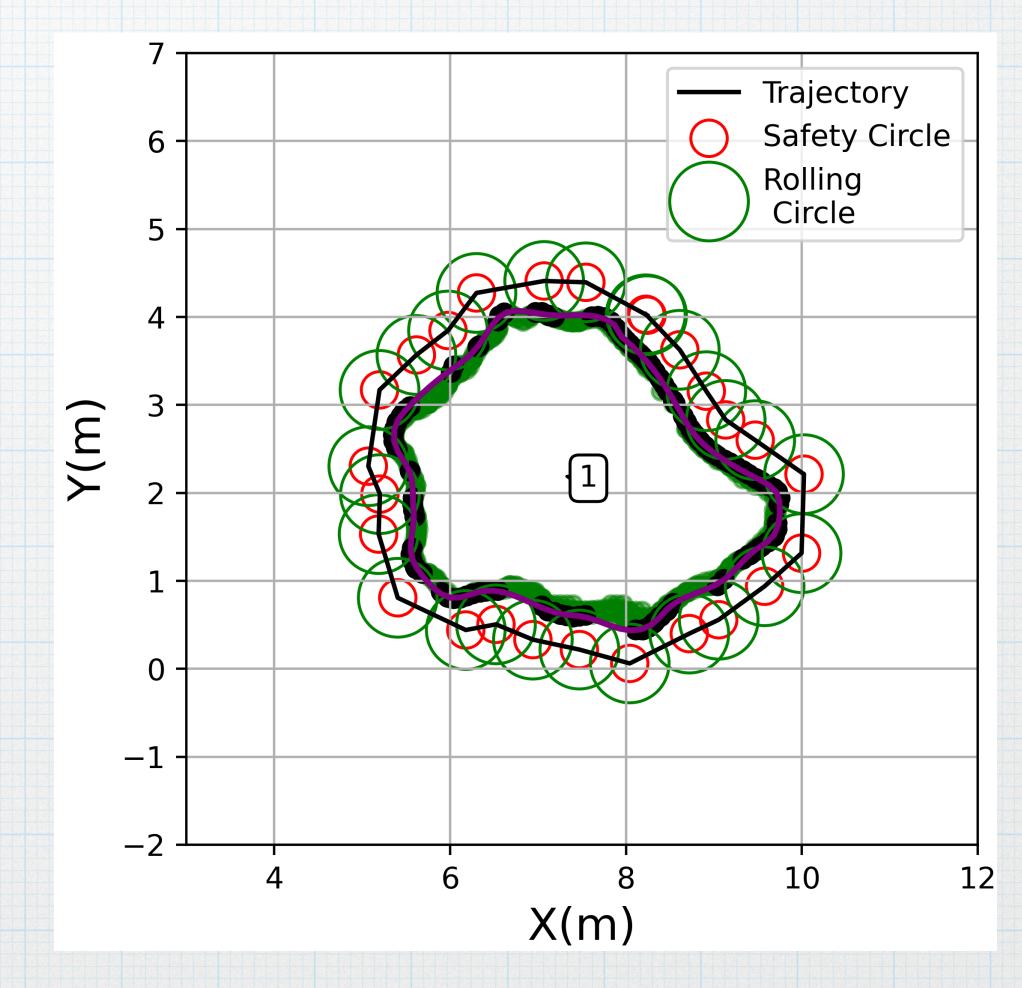
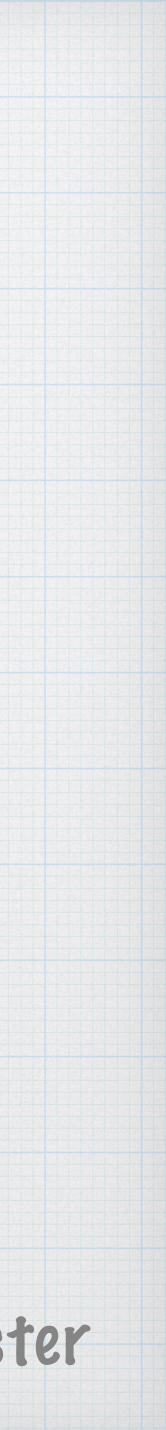


Fig 1: Proximal points for a single cluster



<u>Contribution</u>

Proximal points is analogous to TSP and is NP-Hard.

- * Standard TSP solvers do not exploit geometric arrangement of the grid arrangement in farms to compute.
- * We impose certain constraints and obtain near optimal paths with less time and compute.
- * We then extend our method to deploy Multiple agents using existing solutions to obtain near optimal solutions.

* Given multiple clusters, computing the shortest path for all the

Multiple Cluster Coverage

- Problem Setup Method

Similarity to TSP

 Proposed Approach Results and Discussions

Problem Setup

* Given K clusters, arranged in a $M \times N$ Grid, the set of Proximal points $\omega \in \Omega$, a valid path σ comprises all the waypoints traversed at least once.

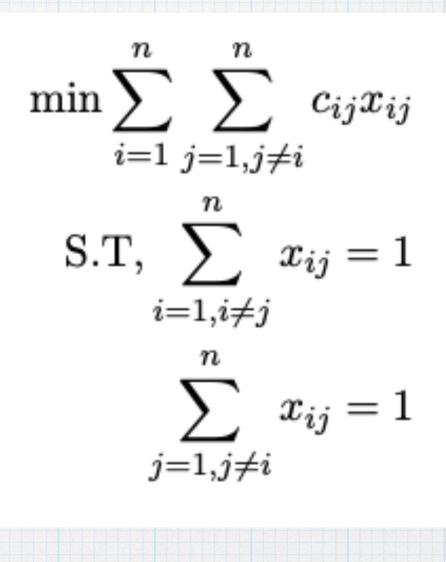
* Given a cost function c and set of all feasible paths Σ , the optimal path σ^* is defined as

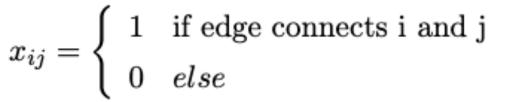
$\sigma^* = \arg\min\{c(\sigma) | \forall \omega \in \Omega\}$

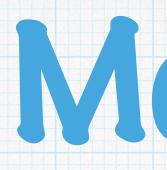
Similarity to TSP

* Given nodes i, j and the cost of travelling from i to j be c_{ij} , we can formulate the TSP problem as

* Where x_{ij} is the variable that decides whether an edge connects node i and j.





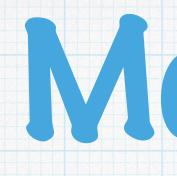


Problem Formulation: Preliminary

* Let us denote the Proximal points belonging to a cluster to be P_i^K * The cost to cover one cluster K can be written as n-1 $C^{k} = \sum_{i=1}^{k} |P_{i+1}^{k} - P_{i}^{k}||$ i=0

* The cost to "switch" from one cluster to another can be written as $C_{ij}^{kl} = ||P_i^k - P_j^l||.$

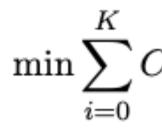
Method



Problem Formulation: Cost

* The cost of a path σ can be given as a sum of costs required to cover one cluster and the cost to switch from one cluster to another.

* Hence, we can formulate our problem as



* Similar to TSP, x_{ii} holds the power of calculating the solution

Method

$$C^{k} + \sum_{i} \sum_{j} C_{ij}^{kl} x_{ij}$$

S.T,
$$\sum_{i=1, i \neq j}^{n} x_{ij} = 1$$
$$\sum_{j=1, j \neq i}^{n} x_{ij} = 1$$

Proposed Approach Graph Construction and Graph Traversal

* We convert the problem into a Graph traversal problem. * The proposed solution can be split into two parts

* Graph Construction

* Graph Traversal

Proposed Approach

* To achieve near optimal solutions, we impose the following constraints

- edge.

Constraints

Any Proximal point can be traversed more than once.

2. Any Proximal point can only be connected to two neighbours.

3. Two clusters can be connected only by a predefined switching

4. The agent is constrained to always switch at the switching edge.

Proposed Approach Graph Construction: Within Cluster

* Given the Proximal points P^n for $G_{\phi}(V_{\phi}, E_{\phi})$.

* For vertices $v_i^n \in P^n$

$$\begin{array}{l} v_{i-}^n = P_{(i-1) \mod S}^n \\ v_{i+}^n = P_{(i+1) \mod S}^n \\ \text{where, } S = |P^n| \\ \phi_{i,i-}^n = (v_i^n, v_{i-}^n) \\ \phi_{i,i+}^n = (v_i^n, v_{i+}^n) \end{array}$$

* Given the Proximal points P^n for the *n*-th cluster, we construct a graph

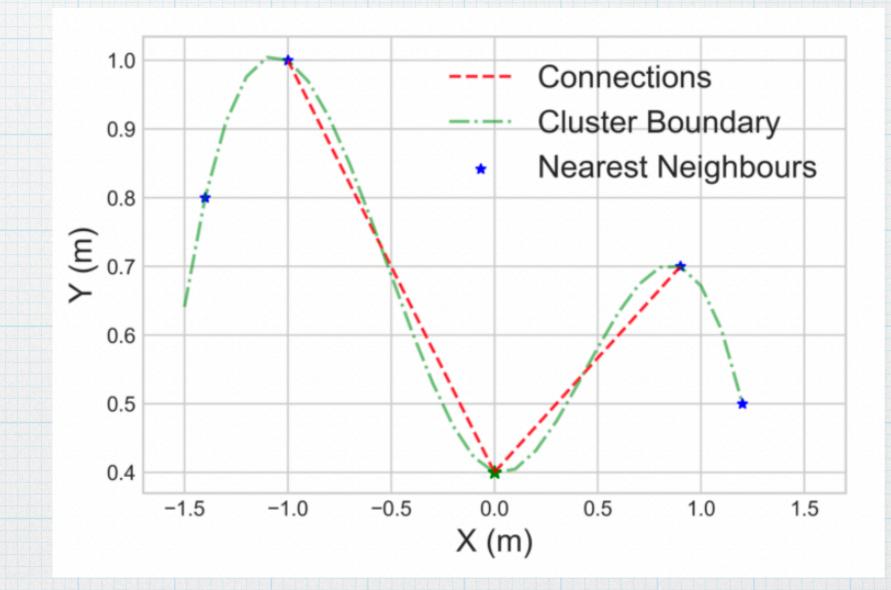


Fig 2: Nearest Neighbours for an example set

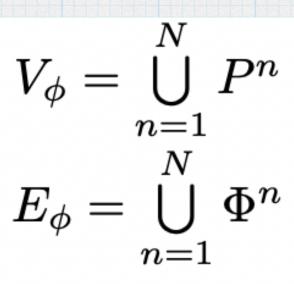
Proposed Approach

* For all the points P^n , we can define the set of all edges that completely cover the the cluster forming a cyclic graph.

 $\Phi^{n} = \bigcup_{i=1}^{S} \{\phi_{i,i-}^{n}, \phi_{i,i+}^{n}\}$

* Finally, the set V_{ϕ} and E_{ϕ} can be defined as

Graph Construction: Within Cluster



Proposed Approach

Graph Construction: Switching Edges * As defined previously, a switching edge is defined as

centers of the clusters

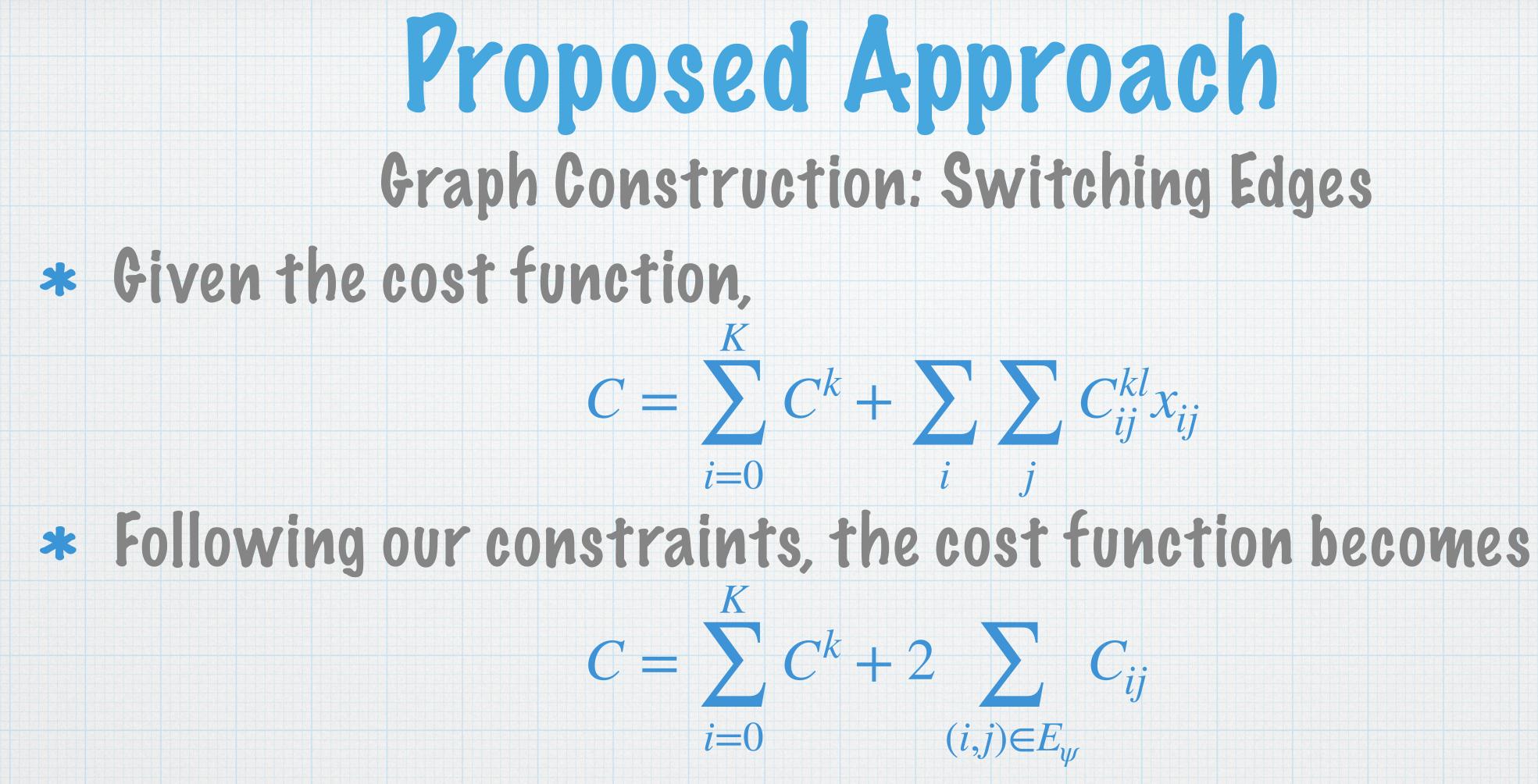
 $V_{\psi} = \{\bigcup_{n=0}^{K} \mu^n\} \cup \{D\}$ $E_{\psi} = \{(v^i, v^j) \mid v^i, v^j \in V_{\psi} \text{ and } v^i \neq v^j\}$

 $\psi^{n,m} = (P_i^n, P_j^m)$

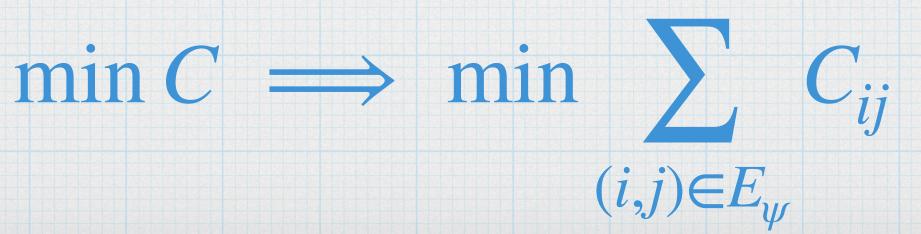
* For any cluster, the center and radius of the cluster can be defined as

 $\mu^n = \frac{\Sigma P_i^n}{|P^n|}$ $r^n = \max_{p \in P^n} ||\mu^n - p||$

* Given the depot D, we construct another Graph $G_w(V_w, E_w)$ using the



* To minimise the cost function is to minimise



Proposed Approach Graph Construction: Switching Edges

- * Hence, we construct a Minimum Span weighted edges E_{ψ}^{*}
- * Using the Edges in E_{ψ}^* we find the nearest points in the cluster and connect them as switching edges
- * Given the new edges, all the edges connecting alternate clusters are $\Psi^{ij} = \{\hat{e} \mid \forall e \in E_{\psi}^*\}$
- * Finally,

 $V = V_{\phi}$ $E = E_{\phi} \cup \Psi^{ij}$

* Hence, we construct a Minimum Spanning Tree of the graph G_{ψ} to obtain the minimum

$$e = (v^n, v^m)$$

 $\mu^n, r^n = v^n$
 $\mu^m, r^m = v^m$
 $\hat{\mathbf{x}}_{mn} = (v^m - v^n)/||v^m - v^n|$
 $x^n = v^n + r^n \cdot \hat{\mathbf{x}}_m n$
 $x^m = v^m - r^m \cdot \hat{\mathbf{x}}_m n$
 $\hat{v}^n = ||x^n - v||$
 $v \in V \phi$
 $\hat{v}^m = ||x^m - v||$
 $v \in V \phi$
 $\hat{e} = (\hat{v}^n, \hat{v}^m)$

Proposed Approach Graph Traversal: Keys

* For a vertex v_i the edge e_i * to be taken can be obtained from

* Where, the function k(e) is defined as a priority key with components:

1. Traversal cost

2. Switching cost

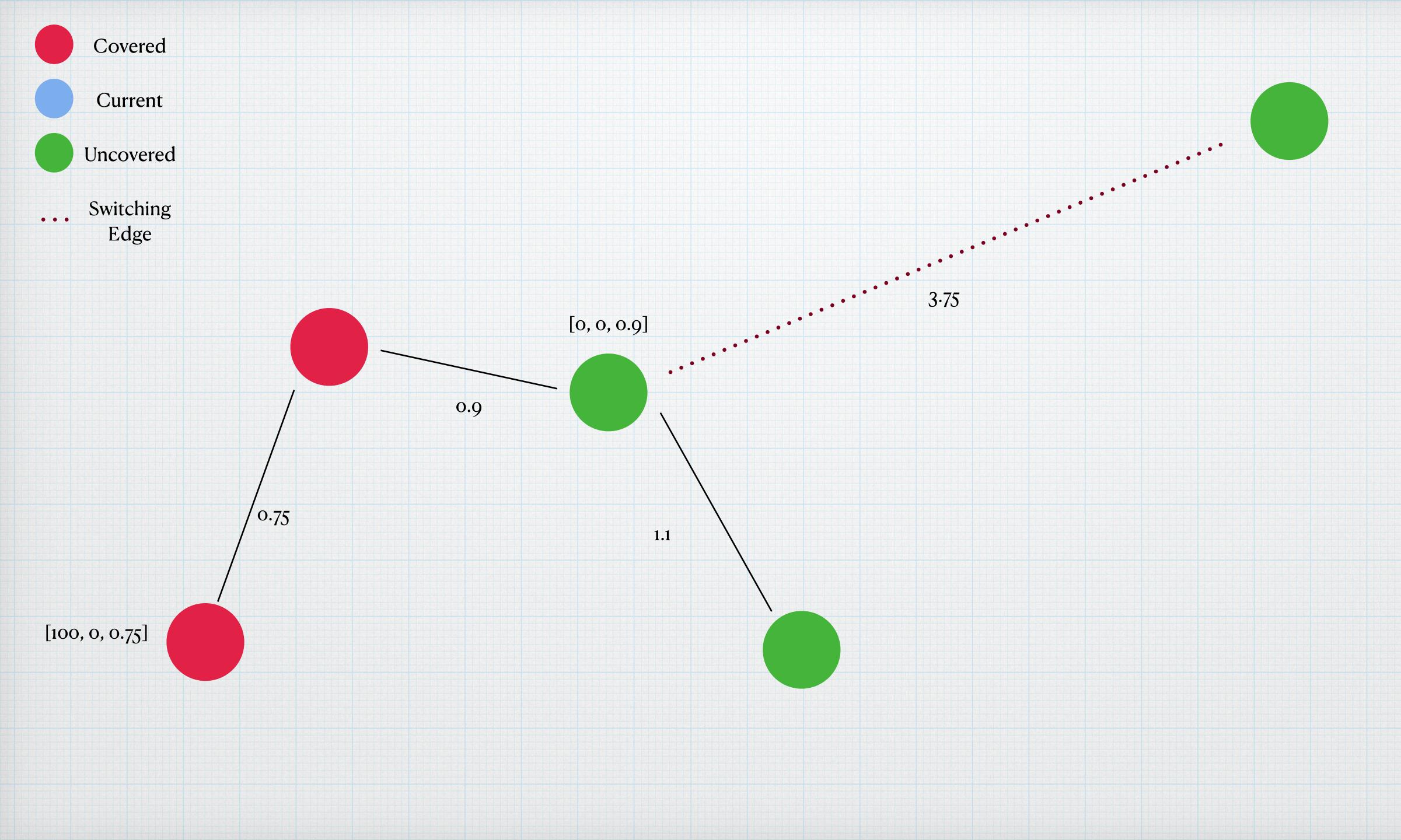
3. Distance cost

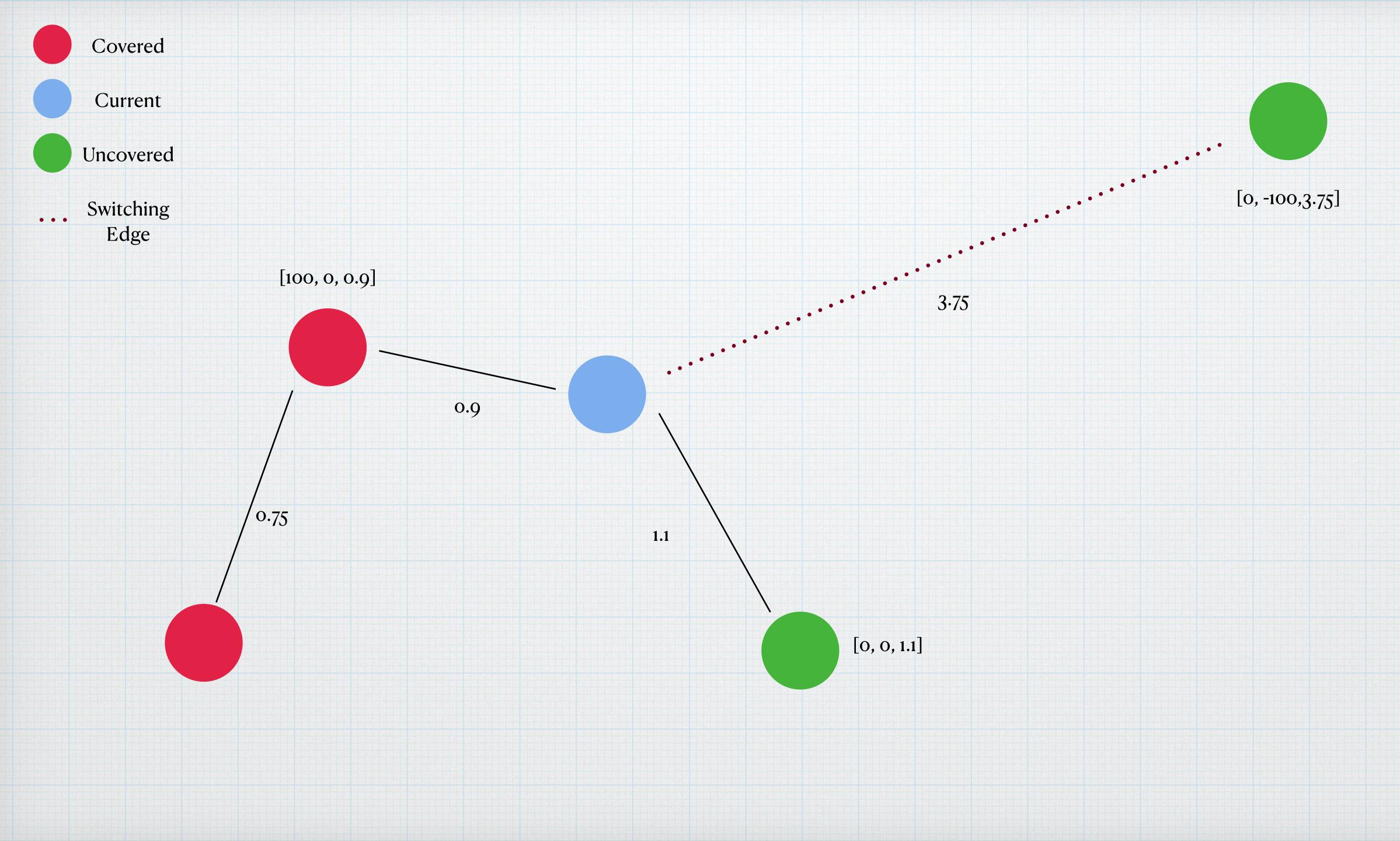
Finally, the path can be defined as

 $e_i = \{ (v_i, v_j) \mid (v_i, v_j) \in E \}$ $e_i^* = \operatorname{argmin} k(e)$ $e \in e_i$

 $k(e) = [c_{traversed}, c_{switching}, ||e||]$

$$\sigma^* = (e_1^*, e_2^*, \dots e_n^*) \; \forall e_i^* \in E$$





Results and Viscussions

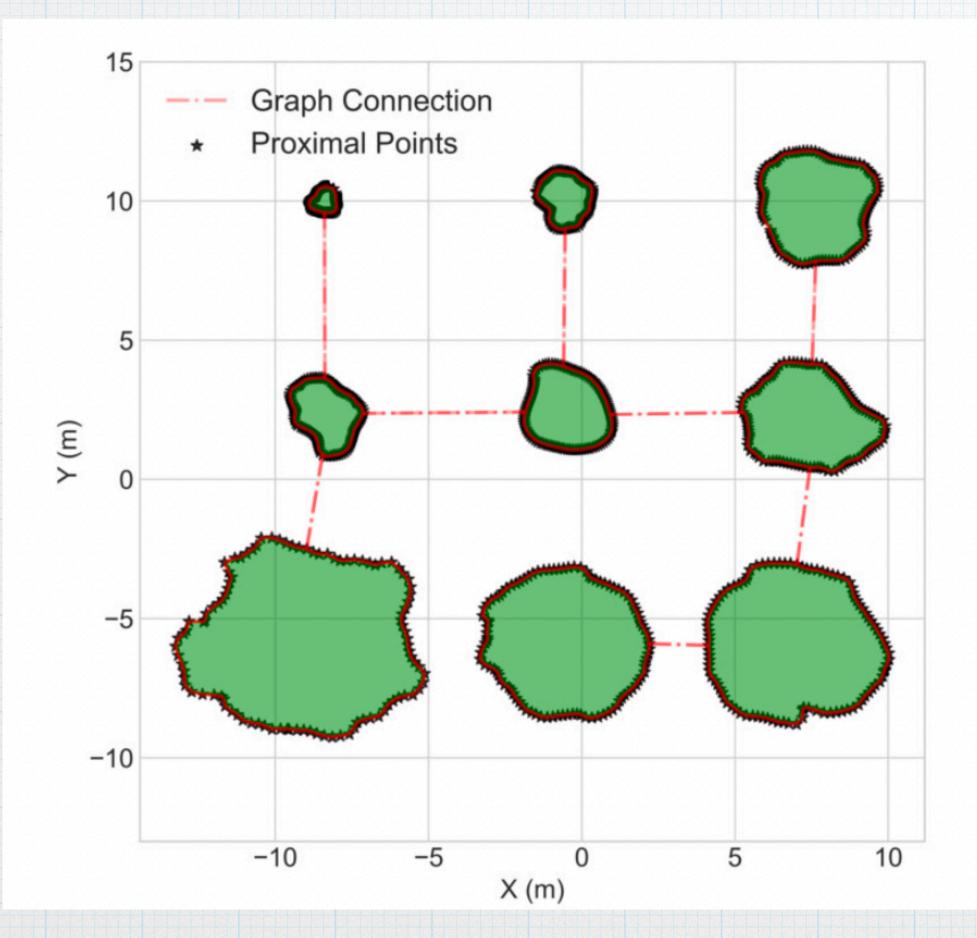
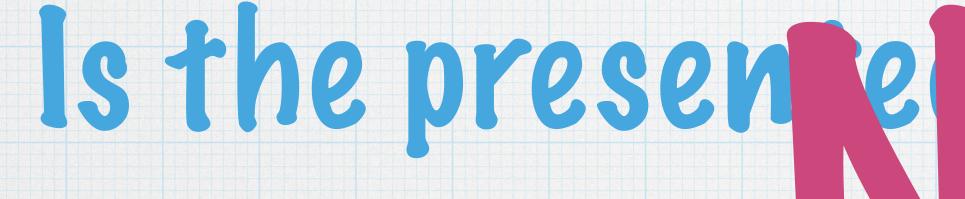
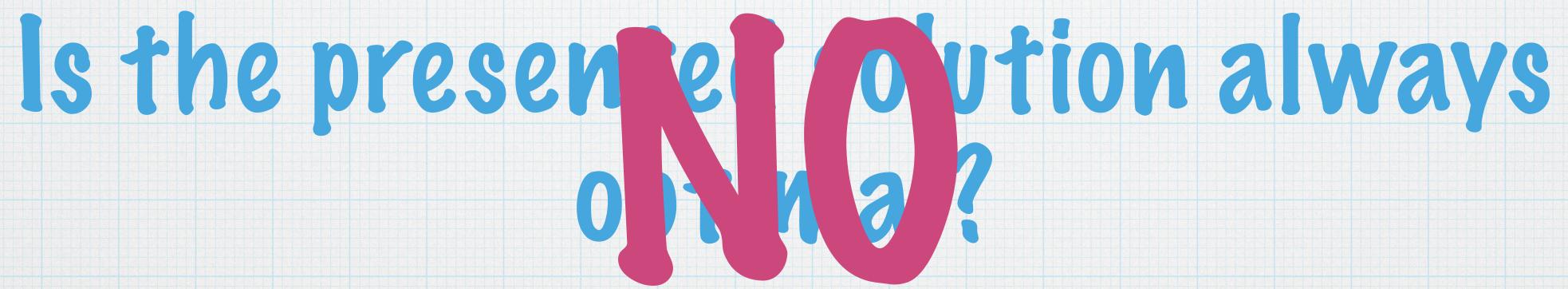


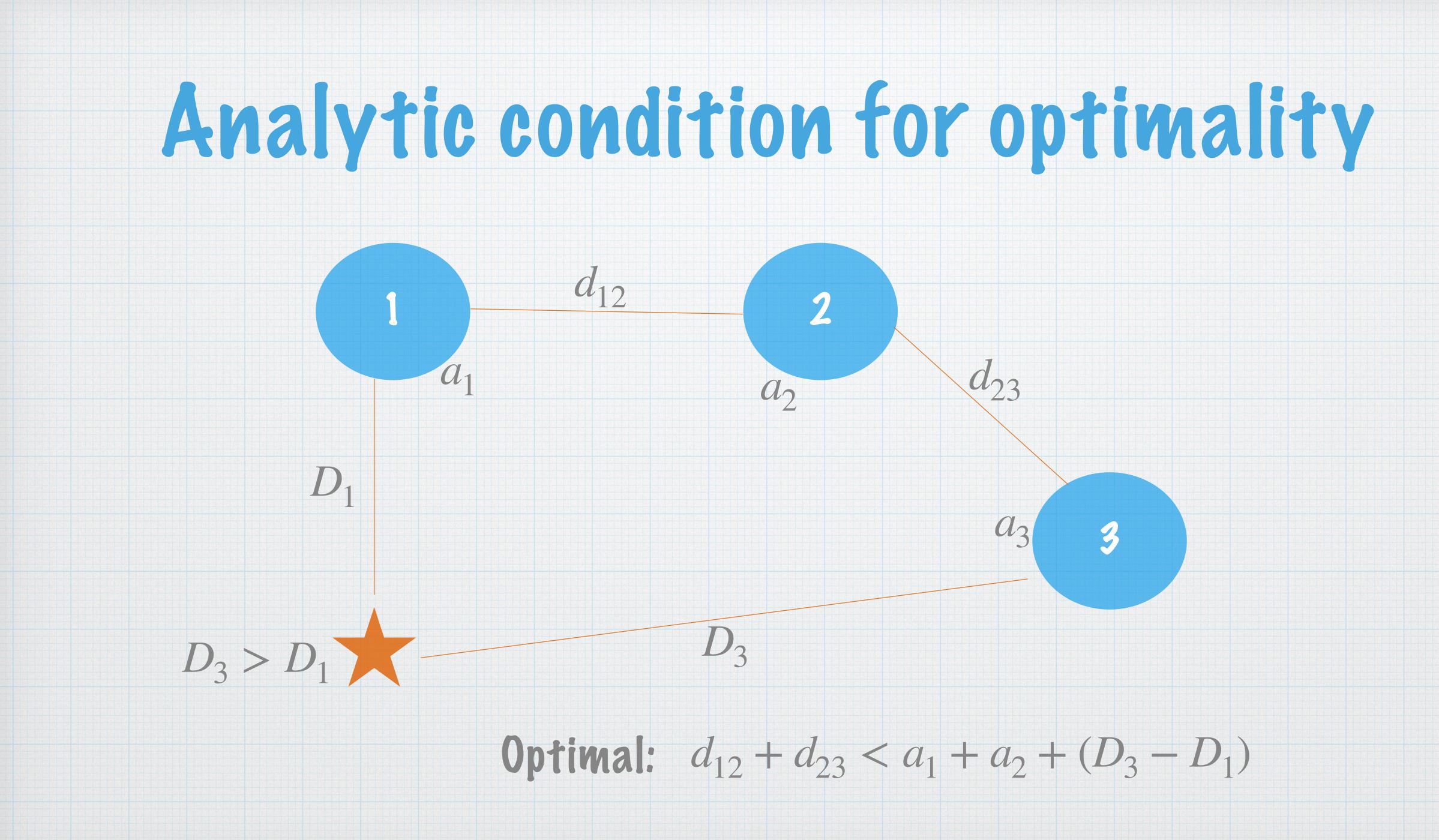
Fig 3: Complete Graph constructed

Environment	$ L_{proposed}$	L_{TSP}
Grid-(2, 1)	$40.78\pm0.11m$	$39.14\pm0.01m$
Grid-(4, 1)	$83.10 \pm 1.12m$	$76.81\pm0.02m$
Grid-(5, 3)	$357.57\pm9.25m$	$290.73\pm0.42m$
Grid-(8, 8)	$1321.01\pm 6.14m$	$1186 \pm 1.83m$
Environment	$t_{proposed}$	t_{TSP}
Grid-(2, 1)	$0.01 \pm 3 \times 10^{-5} s$	$0.03\pm12 imes10^{-5}s$
Grid-(4, 1)	$0.04 \pm 17 \times 10^{-5}s$	$0.13 \pm 1.6^{-3} s$
Grid-(5, 3)	$0.57 \pm 50 \times 10^{-5} s$	$3.25\pm0.06s$
Grid-(8, 8)	$26.70\pm3.40s$	$98.64 \pm 4.58s$

Tab 1: Comparison for path length L and time take t







Multi Agent Multiple Cluster Coverage

Multi-agent Multiple Cluster

Problem Setup
Proposed Method
Existing Solutions
Results and Discussions

Problem Setup

* Given K clusters, arranged in a $M \times N$ Grid, the set of Proximal points $\omega \in \Omega$, a valid path σ comprises all the waypoints traversed at least once.

demand of each cluster is met.

* Given P - heterogenous agents with their capacity C_p , the optimal solution partitions the clusters such that the



* It is important to define the Demand of a cluster.

* Given a cluster radius r and a height H, we can formulate two kinds of demands.

1. Volumetric Demand: $\pi R^2 H$

2. Time Demand: $2\pi RH$

Demand of a Cluster

* Given the clusters K

* Given a cluster radius r and a height H, we can formulate two kinds of demands.

Volumetric Demand: $\pi R^2 H$ 1.



(K, C, D)

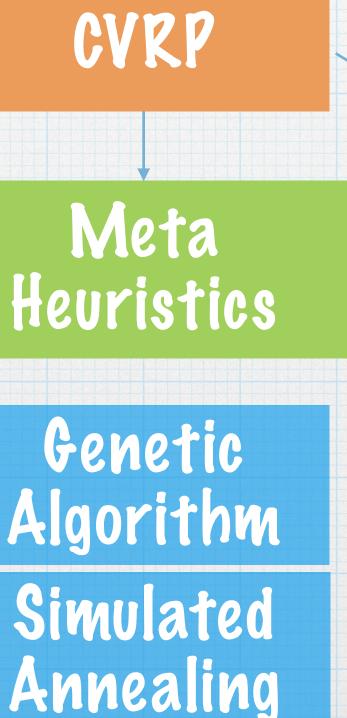
Multiagent Partitioning

Multiple Cluster Coverage

Existing Solutions

* Multi agent partitioning problem is analogous to CVRP problem. There has been extensive research going on to solve the CVRP

Combinatorial Optimisation



Other Methods

Deep RL

Quantum Computers

Method of Application

* We convert the K-cluster environment to a Topological Graph.

* A Topological Graph $G_{\tau}(V_{\tau}, E_{\tau})$ contains the cluster connect alternate clusters. The agents each have capacity C_p.

centers as vertices with some demand D_{ν} . The edges

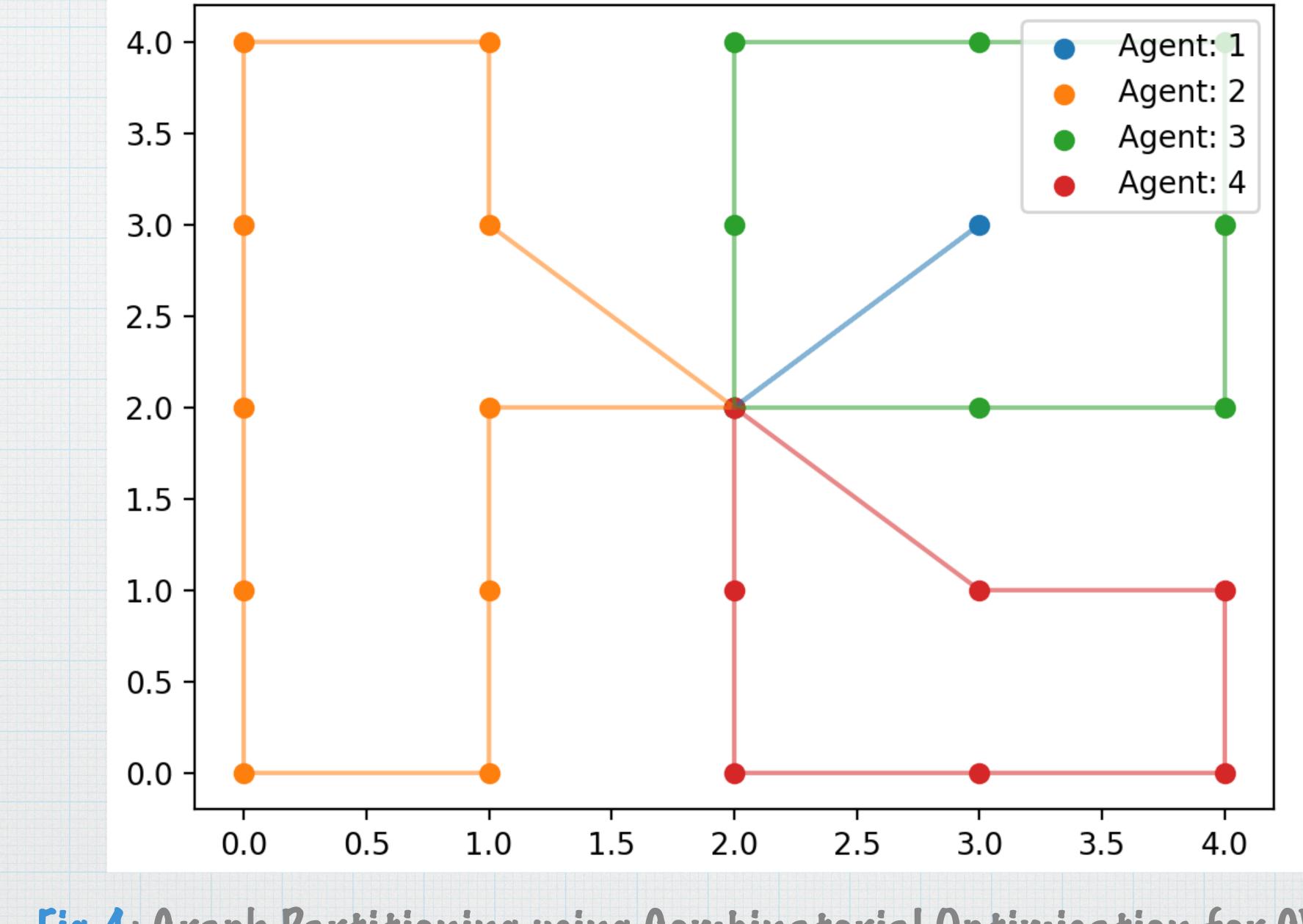


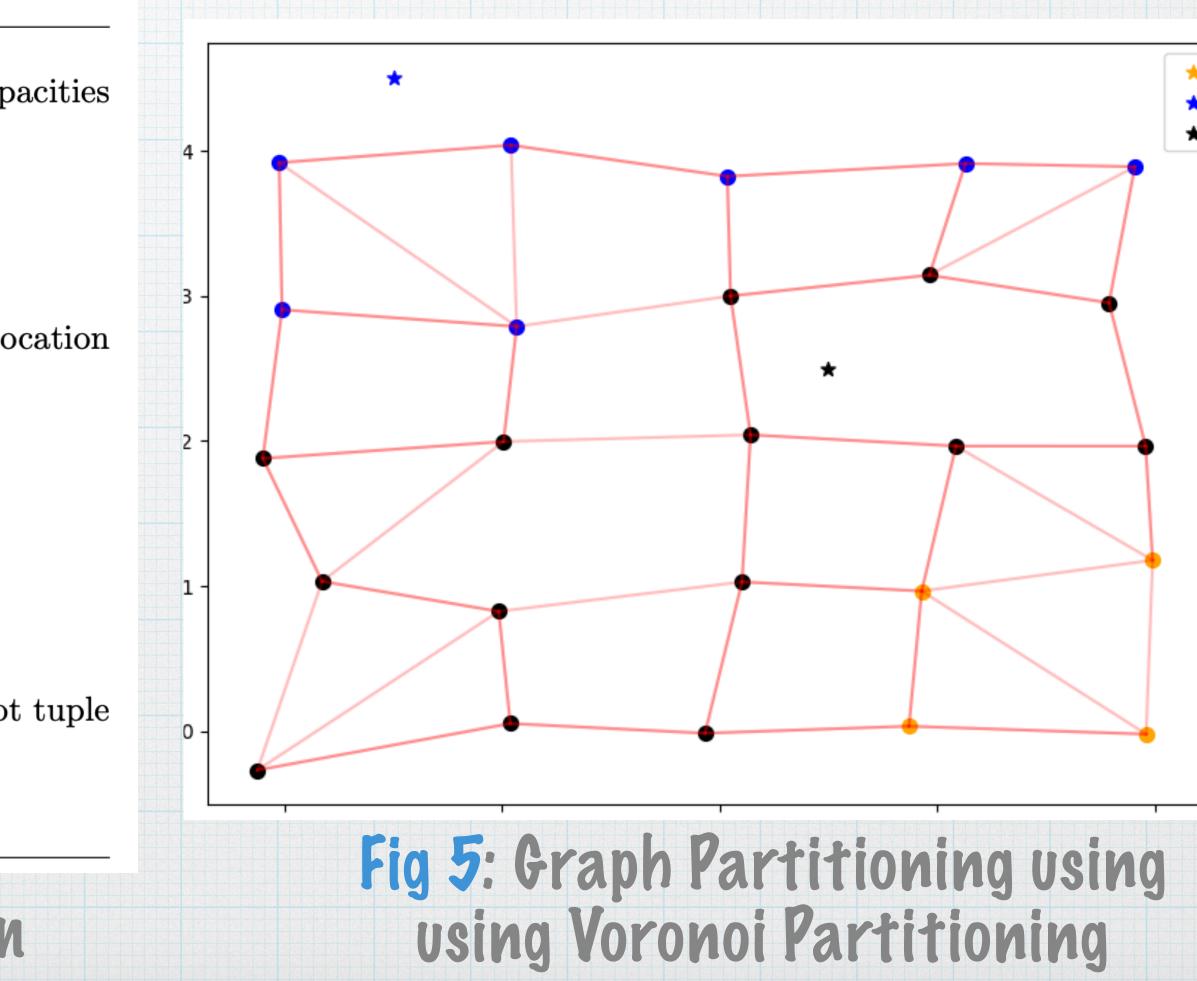
Fig 4: Graph Partitioning using Combinatorial Optimisation for CVRP

Existing Solutions Combinatorial Optimisation: Voronoi Partitioning

Algorithm 1 Voronoi Partitioning of Graph (Modified)

1: G = (V, E)2: $P = \{(p_i, L_i) \forall i \in R\}$ ▷ All robot positions and capacities 3: $g_i \leftarrow \emptyset \ \forall r_i \in R$ 4: for $v \in V$ do if $g_i = \emptyset$ then 5: $c_i, r_i = Dijkstra(p_i, v)$ 6: else 7: $c_i, r_i = Dijkstra(g_i[-1], v)$ ▷ Compute path from latest location 8: end if 9: while $\{c_i, r_i\} \neq \emptyset$ do 10: $c_i^* = \arg\min(\{c_i, r_i\})$ 11: if $c_i^* < L_i$ then 12: $g_i \cup \{v\}$ 13: $L_i \leftarrow L_i - c_i$ 14:break 15:else 16: $Pop(c_i, r_i)$ \triangleright Remove the cost and robot tuple 17:end if 18:end while 19:20: **end for**

Alg 1: Voronoi Partitioning Algorithm



robot0 robot1 robot2

Results and Viscussions

Algorithm	T(s)	Success rate $(\%)$
CO - ORTools	$0.234\pm0.011s$	99.78 ± 0.02
CO - Voronoi	$0.531\pm0.12s$	76.81 ± 5.12
\mathbf{GA}	$4.573 \pm 1.25s$	40.73 ± 9.87

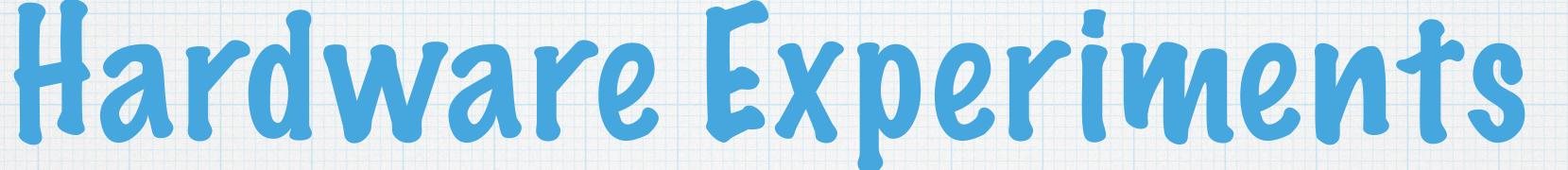
across literature.

* The success rate of Genetic Algorithm heavily depends on

* The Combinatorial Optimisation method from Google OR Tools is the fastest and is the most reliable. This is also corroborated

parameters and the choice of Crossover and Mutation functions.

• Hardware setup



Local Planning using Error Prediction Local Planning using Graph based Planner

* PJI Matrice M600 Pro as testbed.

* Equipped with d435i RGB-D camera.

* The interface is written using PJI ROS SPK

Fig 6: PJI Matrice M600 Pro

Local Planning using Error prediction

* Sometimes the UAV goes really close to the canopy. This is dangerous without any onboard correction.

control command accordingly

* At every time step, we measure Depth error and predict the Depth error for the next time step and correct the

Predict

Update

Local Planning using Error prediction

Trajectory Correction

$X = X_i \oplus \epsilon$

$\epsilon = d_a - d_o$

Measurement

Local Planning using Error prediction

* There were some issues due to the use of raw depth image.

* Use averaging kernel as a solution

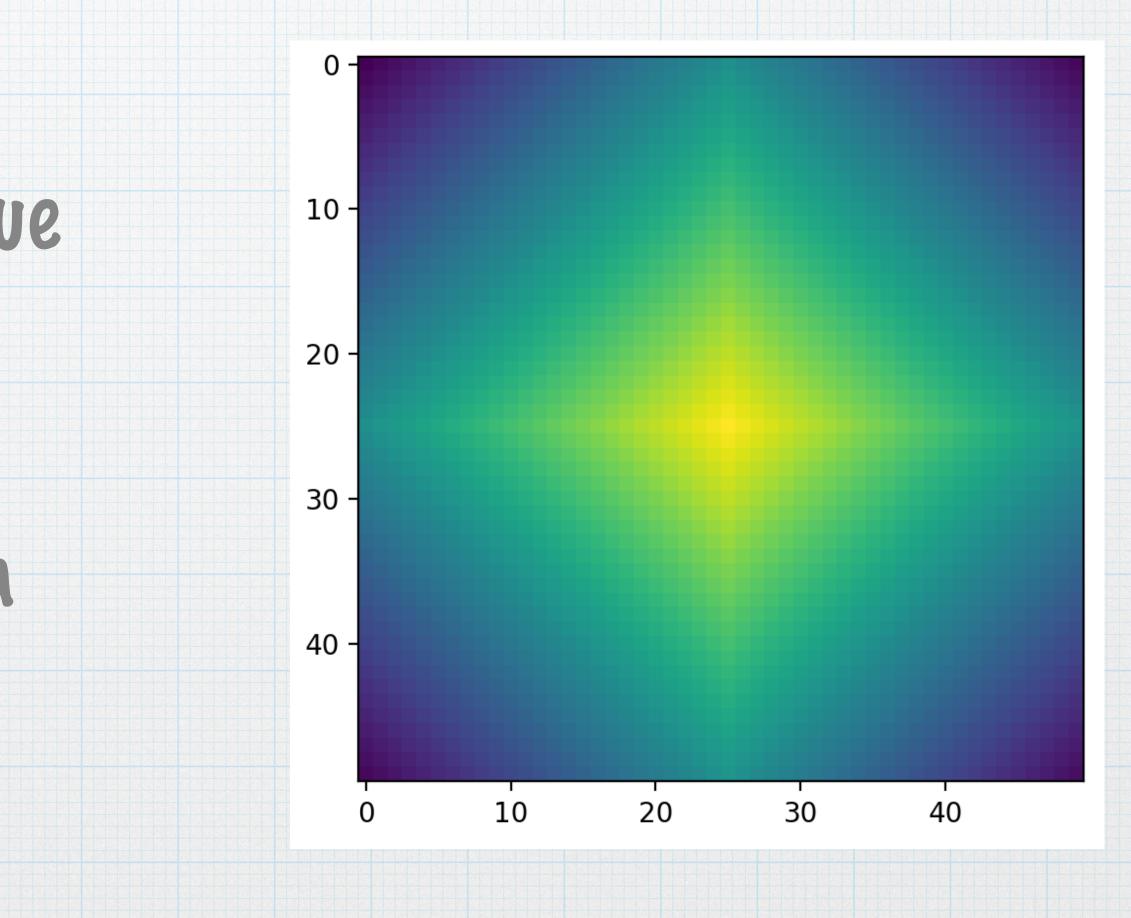


Fig 7: Averaging Kernel

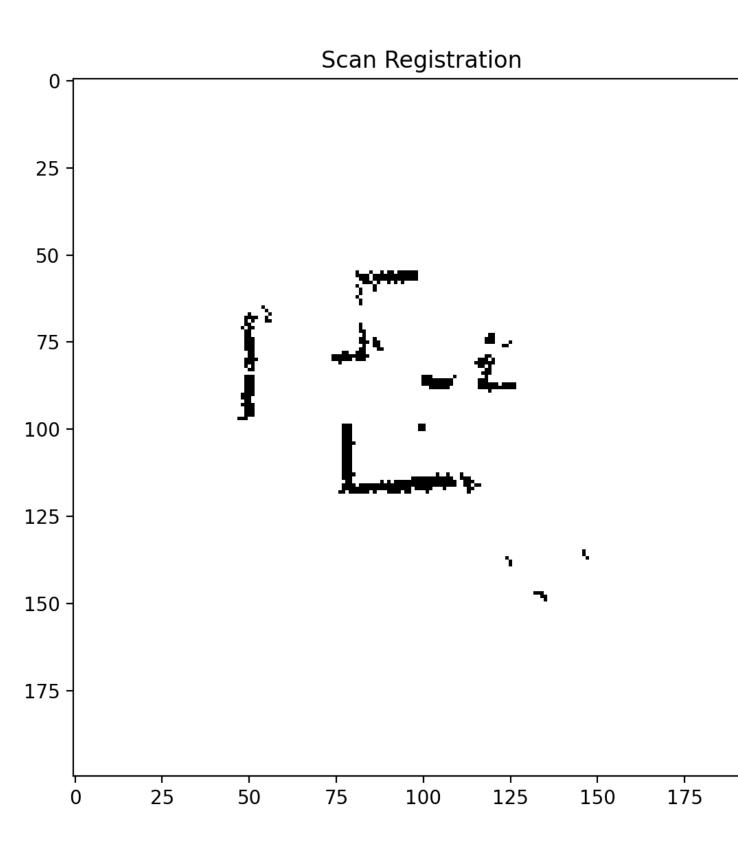
Local Planning using Graph Based Planner

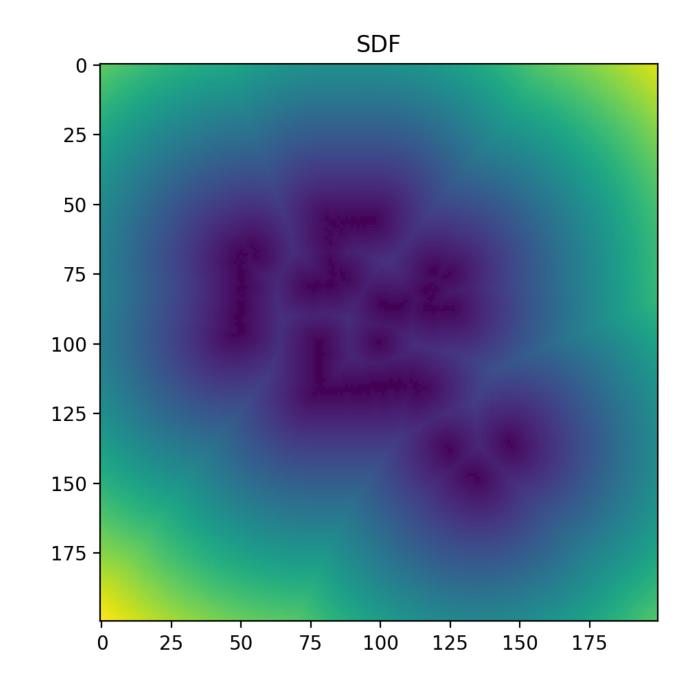
* The above approach is reactive in nature. This may lead to unpredictable behaviour.

* Hence, we try to use a Graph based local planner.

* We perform Scan registration and then use the SDF generated to sample points and perform Graph Search.

Local Planning using Graph Based Planner Scan Registration





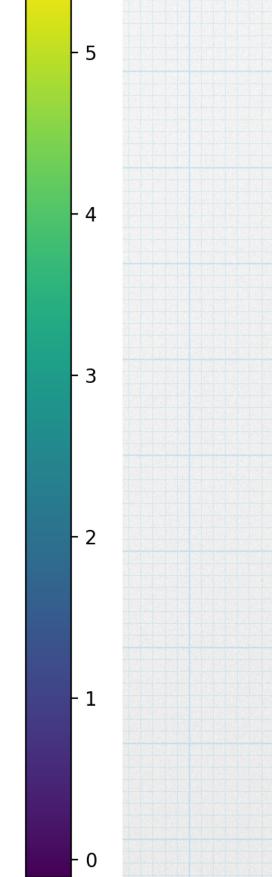


Fig 8: Scan Registration and SDF

Local Planning using Graph Based Planner Ellipsoid Rejection Sampling

* Given the Start and Goal locations, we randomly sample states in the ellipse joining the start and goal.

* We then reject the samples that are too close to the obstacles using the SDF.

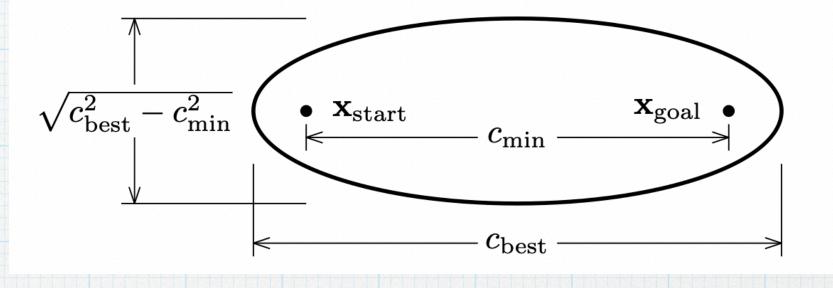


Fig 9: Randomly sample states within an ellipse whose foci are Start and Goal and the eccentricity of the ellipse being $\frac{c_{min}}{}$. Here c_{best} can be considered to $\frac{c_{best}}{be \alpha \cdot c_{min}}$ where α is a hyper parameter

Local Planning using Graph Based Planner Search Algorithm

points as vertices.

safety threshold are connected as edges.

path from start to goal.

found as the number of samples increases.

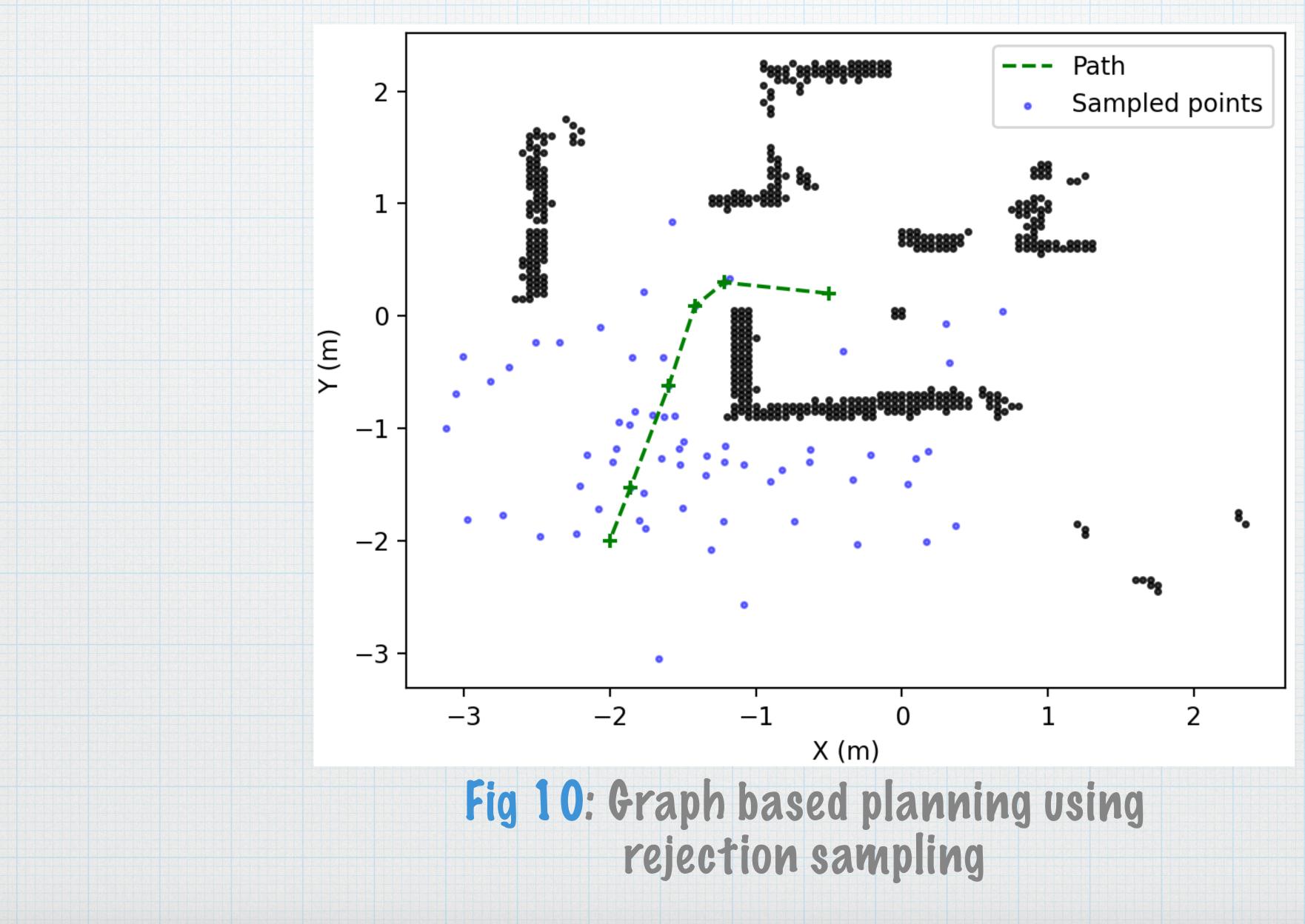
* Given the sampled points, a Graph is constructed with the sampled

* The vertices that are close enough and are away from collision or

* Then we use a Graph search algorithm (A-Star, Dijkstra) to find a

* The algorithm is Asymptotically optimal. The optimal solution is

Local Planning using Graph Based Planner



* We presented a near optimal solution to a NP Hard problem of Multiple cluster coverage.

* We extended the Multiple cluster coverage algorithm to use Multi agent systems.

* We developed local planners to ensure safety during traversal of global waypoints.

Conclusion

