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BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, GOA CAMPUS

Abstract

Bachelor of Engineering

Multiagent Path Planning for Proximal Coverage of Agricultural Farms

by Suhrudh Sarathy

In the field of agriculture, an important application of Robotics is to inspect the biomass. Such

inspections can be achieved fruitfully if the robot can reach the area of the biomass carefully and

cover all the clusters of biomass in a effective manner. It also becomes logical to use multiple

agents for this task as the capacity of a single robot greatly minimises the coverage of the

agricultural farm.

The problem of covering a given area with least cost incurred w.r.t path length, control effort,

time etc. comes under the class of NP-Hard problems closely resembling the Travelling Salesman

Problem (TSP). The solution to the TSP exists and is intractable given the scale of agriculture

fields. We observed that the arrangement of biomass clusters in the agricultural fields greatly

simplifies this problem.

Firstly, considering certain relaxations and constraints, we formulate the above problem of

covering a given area as a Graph Traversal Problem where we construct a graph of nodes

proximally positioned to cover the biomass clusters effectively. We show an analytical bound to

the constraints and evaluate the costs in simulated environments.

Secondly, we analyse the existing methods for the problem of Multi agent coverage. The problem

of Multi agent coverage is similar to the Capacitated Vehicle Routing Problem (CVRP), which

is also NP-Hard. We use existing methods to solve the CVRP and our algorithm to perform a

two-level decentralised planning to efficiently cover the agricultural fields using multi agents.

http://www.bits-pilani.ac.in/
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Chapter 1

Introduction

1.1 Motivation

Use of modern technology has been on the rise in the recent years in the field of Agriculture.

Robotics plays a huge part in provinding modern solutions to the problems in Agriculture.

In recent years, teams of Unmanned Ground Vehicles (UGV) and Unmanned Aerial Vehicles

(UAV) have been extensively deployed to perform various tasks in the agriculture fields such as

inspection, weeding, spraying etc [11]. It is imperative that these robots remain autonomous

for their effective usage. Thus new algorithms are required specifically for deploying UGVs and

UAVs in agricultural environments as these environments pose specific challenges due to the

scale of the environment. The scale of the environment demands efficient use of power supply

resources and hence requires efficient planning. It is also important that the behaviour of the

robots remain predictable for safe and repeated uses.

Modern day cameras allow robots to perform high resolution imaging thus helping in tasks like

inspection, surveillance etc. A UAV is able to perform efficient 3D reconstruction [8] [14] of the

world using a recorded video or multiple recorded images using tools such as Structure from

Motion, Visual-SLAM etc. Using these 3D reconstructions enables use to analyse the field in real

time. An important requirement for efficient reconstructions is to reach closest to the biomass.

This is important as the resolution of the reconstruction depends on the quality of the images

taken which depends on the distance the images have been taken from.

Adding to this, it is also important to cover the entire farm efficiently. The limitations of battery

power onboard the robot require that efficient planning be done. In some cases, it also helps to

have deterministic global paths for the robot to follow as it helps the ground station determine

feasibility of the path before hand to enable safety and repeatability.

1
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In this work, we focus on the problem of travelling a set of Proximal Points around multiple

biomass clusters effectively. This problem, in essence is NP-Hard as it is similar to the Travelling

Salesman Problem (TSP). According to our problem statement, existing solutions scale extremely

poorly in terms of speed and resources required. Because the algorithm will eventually be

deployed on resource-constrained hardware, an effective solution must be provided. We develop

an algorithm where use exploit some relaxations of the environment and impose certain constraints

to solve the traversal problem. We extend our algorithm to use multiple agents and evaluate our

algorithm in simulated environments.

1.2 Proximal Points

Proximal points are the locations around a biomass that an agent can reach safely by maintaining

certain safe distance to the contour of the canopy. Each biomass cluster has a set of Proximal

points that are generated offline and will be used by UAV to traverse.

Figure 1.1: Proximal points around a given cluster. The safety circle and rolling circle are
used to generate Proximal points. A point is considered unsafe when the radius of rolling circle

equals the radius of safety circle.

1.3 Our Contribution

The problem of covering biomass clusters is NP-Hard, similar to TSP. However, standard TSP

solvers do not account for the grid-based arrangement of agricultural land. Using the principles
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of Graph Traversal, we attempt to develop our Multiple Cluster Coverage (MCC) algorithm.

Our algorithm exploits the geometrical arrangement of the agricultural farm land and produces

nearly optimal path with less time and compute required than standard TSP solvers. We then

extend our method to use Multiple agents by combining existing solutions to the Vehicle Routing

Problem (VRP) and our algorithm.

1.4 Organisation

The document is divided into five chapters. The Multiple Cluster Coverage algorithm is described

in Chapter 2, followed by the Multi Agent extension in Chapter 3. Chapter 4 concludes the

document followed by Appendices.



Chapter 2

Multiple Cluster Coverage

2.1 Introduction

Given a set of biomass clusters, the problem of Multiple Cluster Coverage is to efficiently find

the path connecting all Proximal Points of those biomass clusters. This is analogous to the

Travelling Salesman Problem (TSP) where the task is to visit every node such that the total

path length is minimised. However, the scale of the problem along with certain restrictions does

not allow us to use TSP Solvers directly for this problem as the computation complexity of a

TSP problem grows exponentially with the number of nodes.

However, in most agricultural plantations, biomass is planted in grid arrangement. In such cases

the distances between successive biomass clusters is relatively uniform. We exploit this constraint

along with allowing certain relaxations to build a Undirected Graph using the Proximal points

as vertices and connecting the adjacent vertices with weighted edges. We use a lexicographical

key with certain costs to select the next vertex to travel to. We show that using our constraints

and our problem method reduces the computation complexity and time required to calculate

near optimal paths.

2.2 Problem Setting

Given K clusters arranged in a M ×N grid arrangement, each cluster has a set of Proximal

points. Let the set of Proximal points belonging to the K clusters be Ω. We define a valid path

σ starting from an arbitrary starting point wstart ∈ Ω as the path that traverses all the points at

least once. Given a cost function C and a set of feasible paths Σ, the optimal path σ∗ w.r.t to

4
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the cost function C can be defined as

σ∗ = argmin
σ∈Σ

{C(σ(ω))|∀ω ∈ Ω} (2.1)

2.2.1 Similarity to TSP

The Travelling Salesman Problem is defined broadly as finding the shortest possible routes

covering all the given nodes atleast once. This problem belongs to a class of NP-Hard problems

and the worst case runtime of any solution to the TSP grows superpolynomially, but not more than

exponentially. There are multiple formulations of TSP. But here, we use the Integer Programming

Problem formulation, specifically the Dantzig–Fulkerson–Johnson (DFJ) [4] formulation below,

Given the nodes 1 . . . n,

xij =

{
1 if edge connects i and j

0 else
(2.2)

Consider the cost of moving from one node to another be cij > 0. Then the TSP can be

formulated as

min
n∑
i=1

n∑
j=1,j ̸=i

cijxij

S.T,

n∑
i=1,i ̸=j

xij = 1

n∑
j=1,j ̸=i

xij = 1

(2.3)

The constraints here ensure that each node is visited only once. We can similarly formulate our

problem of Proximal coverage in the lines of TSP where the nodes are the Proximal points of all

clusters and the edges are connected such that no collision occurs with the biomass.

2.3 Related Work

The Travelling Salesman Problem has been extensively studied. Over time many exact and

heuristic solutions have been developed to solve the problem [12]. This problem is known to be

NP-Hard and cannot be solved in Polynomial time. Despite the computational difficulty, TSP

can be solved effectively using heuristic methods such as Genetic Algorithm [7], Tabu Search,

Simulated Annealing etc [12].
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There also exists approximate solutions for solving the TSP. Approximate algorithms are efficient

algorithms that provide approximate solutions to optimisation problems with theoretical bounds

[13].

Previous works also shows a use of Minimum Spanning Trees (MST) on Graphs to reduce the

TSP problem into multiple smaller problems [9]. However, the usage of MST starkly differs to

that of done in this work.

2.4 Method

Consider a grid arrangement of K biomass clusters in M ×N rows and columns. The Proximal

points belonging to a cluster k ∈ K can be denoted as P ki . The total cost of circumnavigating a

cluster k can be given as Ck =
∑n−1

i=0 ||P ki+1 − P ki ||.The cost of switching from an arbitrary node

i in cluster k and another node j in cluster l can be written similarly as Cklij = ||P ki − P lj ||. The
total cost of the path to cover multiple clusters can be formulated as below

min

K∑
i=0

Ck +
∑
i

∑
j

Cklij xij

S.T,
n∑

i=1,i ̸=j
xij = 1

n∑
j=1,j ̸=i

xij = 1

(2.4)

Where,

xij =

{
1 if edge connects i and j

0 else

The formulation above is similar to that of the TSP [2.3]. We propose certain relaxations and

add additional constraints to modify the formulation into a Graph traversal problem.

2.4.1 Proposed Approach

The cost of any valid path σ ∈ Σ can be represented as the sum of cost of covering all clusters

and the cost of switching from once cluster to another. Similar to the TSP, the variable xij

affects the optimality of the solution. In our approach, we convert the problem into a Graph

Traversal problem. We construct a cyclic graph around each cluster with Proximal points of the

cluster as the vertices and connect alternate clusters with edges building a Weighted Undirected

graph. We later use lexicographical keys to obtain next best vertex to traverse to and completely

traverse the graph. The proposed algorithm is divided into two steps, Graph Construction and
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Graph Traversal. Both these algorithms are independent of each other in a sense that once a

Graph is constructed, it can be traversed multiple times.

Additionally, we impose the following relaxation and constraints to obtain near optimal solutions.

1. Any vertex in the Graph can be traversed more than once.

2. Any vertex can only be connected to two neighbours of the same cluster and one vertex of

other cluster.

3. Two clusters can be connected only by a predefined switching edge.

4. The agent is constrained to always switch at the switching edge

2.4.2 Graph Construction

Given the Proximal points Pn for nth cluster, we construct a graph Gϕ(Vϕ, Eϕ). For vertices

vni ∈ Pn:
vni− = Pn(i−1) mod S

vni+ = Pn(i+1) mod S

where, S = |Pn|

ϕni,i− = (vni , v
n
i−)

ϕni,i+ = (vni , v
n
i+)

(2.5)

For all the Proximal points Pn of a nth cluster we can define the set of all edges that completely

cover the cluster forming a cyclic graph as

Φn =

S⋃
i=1

{ϕni,i−, ϕni,i+} (2.6)

Now the graph defined by Vϕ and Eϕ covers all the clusters with each cluster fully connected.

Vϕ =

N⋃
n=1

Pn

Eϕ =

N⋃
n=1

Φn

(2.7)

To connect alternate clusters, we define a special edge called switching edge. A switching edge

carries a connection from a vertex in once cluster to a vertex in a different cluster. A switching

edge can be defined as

ψn,m = (Pni , P
m
j ) (2.8)
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Figure 2.1: Every point is connected to two of its neighbours each in opposite sides to each
other with respect to the normal at a point. This ensures that the Graph constructed is complete.

Figure 2.2: Fully connected graph generated using the Proximal points of a cluster
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where the points Pni , P
m
j are the points belonging to nth, mth cluster respectively.

Using Proximal points Pn, the center of a cluster µn and radius of the cluster rn, can be defined

as

µn =
ΣPni
|Pn|

rn = max
p∈Pn
||µn − p||

(2.9)

We construct a graph Gϕ(Vϕ, Eϕ) given the location of the depot D and the cluster centers µn as

Vψ = {
K⋃
n=0

µn} ∪ {D}

Eψ = {(vi, vj) | vi, vj ∈ Vψ and vi ̸= vj}

(2.10)

We can define the total path cost to be

C =

K∑
i=0

Ck +
∑
i

∑
j

Cklij xij (2.11)

Owing to our constraint of the switching edges, we can reformulate the cost function as follows

C =
K∑
i=0

Ck + 2
∑

(i,j)∈Eψ

Cij (2.12)

Since we fix the switching edge and constrain the agent to move from once cluster to another

via the switching edge, the total cost now becomes the sum of cost to cover all the clusters and

the cost of going and coming through clusters using the switching edge.

To minimise the cost function now is to minimise

minC =⇒ min
∑

(i,j)∈Eψ

Cij (2.13)

We obtain the Minimum Spanning Tree (MST), T (Vϕ, E
∗
ϕ) of the graph Gϕ where T ⊂ Gϕ. The

MST T consists of the edges with the least sum of costs and hence minimises our cost function.

E∗
ψ = min

∑
(i,j)∈Eψ

Cij (2.14)

Using the edges E∗
ψ we find the nearest vertex of a the cluster that is closest to the point where

the line joining the centers intersects with the boundary. For an edge e ∈ E∗
ψ we find a new edge

ê that uses the Proximal points as vertices instead of the cluster centers to connect two clusters.

e = (vn, vm)
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µn, rn = vn

µm, rm = vm

x̂mn = (vm − vn)/||vm − vn||
xn = vn + rn · x̂mn
xm = vm − rm · x̂mn

v̂n = ||xn − v||
v∈V ϕ

v̂m = ||xm − v||
v∈V ϕ

ê = (v̂n, v̂m)

Given the new edges ê ∀e, the set of all the edges that connect alternate clusters can be written

as

Ψij = {ê | ∀e ∈ E∗
ψ} (2.15)

Finally, the complete Graph connecting all the Proximal points along with switching edges can

be represented as G(V,E)

V = Vϕ

E = Eϕ ∪Ψij
(2.16)

2.4.3 Graph Traversal

Given a fully connected graph G(V,E), we traverse the graph completely using the edges e ∈ E,

starting from the depot D until all the vertices v ∈ V are not traversed atleast once. To traverse

the graph, we evaluate all the edges emanating from a vertex v and choose the edge with least

cost. We continue this until, we reach the depot D thus completely covering all the Proximal

waypoints.

For a vertex vi, the edge to be taken e∗i can be chosen by,

ei = {(vi, vj) | (vi, vj) ∈ E}

e∗i = argmin
e∈ei

k(e)
(2.17)

Where k(e) is defined as a priority key with the components: traversal cost, switching cost,

distance cost in order of decreasing priority. Comparison of keys happens in lexicographical

ordering.

k(e) = [ ctraversed, cswitching, ||e|| ] (2.18)

Hence, the optimal path can be described as

σ∗ = (e∗1, e
∗
2, . . . e

∗
n) ∀e∗i ∈ E (2.19)
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Figure 2.3: Fully connected Graph given multiple clusters. The edges connecting alternate
clusters are the switching edges.

Appendix A contains a detailed example using the Graph traversal algorithm.

2.5 Experiments

2.5.1 Setup

We compare the performance of the Multiple Cluster Coverage algorithm in a set of simulated

environments that mimic an agricultural farm. Specifically, we simulate environments where the

biomass clusters are approximated as circles with a radius of 2m. The centers of the clusters are

placed in a grid configuration with M ×N rows and columns. We evaluate the performance

of the proposed algorithm using length of path generated and the time taken for computation

as metrics. We compare our algorithm with traditional TSP solver from Google OR-tools. We

consider every vertex of our graph as a node and connect edges that are collision free with the

biomass to construct the TSP problem.

2.5.2 Results

The results of comparisons can be found in Table 2.1. The proposed algorithm is capable of

producing near-optimal solutions compared to the TSP solver while reducing the computation

time by 3.7× on an average. The simulations were performed on MacBook Air with 8GB RAM

and an M1 Processor running MacOS 12.4
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Table 2.1: Comparison of the length of the path L and computation time t

Environment Lours LTSP
Grid-(2, 1) 40.78± 0.11m 39.14± 0.01m
Grid-(4, 1) 83.10± 1.12m 76.81± 0.02m
Grid-(5, 3) 357.57± 9.25m 290.73± 0.42m
Grid-(8, 8) 1321.01± 6.14m 1186± 1.83m

Environment tours tTSP
Grid-(2, 1) 0.01± 3× 10−5s 0.03± 12× 10−5s
Grid-(4, 1) 0.04± 17× 10−5s 0.13± 1.6−3s
Grid-(5, 3) 0.57± 50× 10−5s 3.25± 0.06s
Grid-(8, 8) 26.70± 3.40s 98.64± 4.58s

2.6 Limitations

The algorithm produces near-optimal results when the environment is similar to a Grid ar-

rangement with M × N rows and columns. Otherwise, there is no guarantee that the above

algorithm shall produce comparable results as reported above. This is due to the fact that

the constraints and relaxations hold well in a Grid setting and might not generalise. In other

cases, the problem remains NP-Hard and cannot be solved trivially. However in Appendix B we

provide an analytical condition for near-optimality of the algorithm.



Chapter 3

Multi Agent Multiple Cluster

Coverage

3.1 Introduction

In the previous section, we provide an effective solution to the problem of Multiple cluster

Coverage. However, in real life, the Agricultural land to be covered is huge and a single agent

might not be able to cover due to energy constraints. In such cases, multiple agents are deployed

to share the work and to cover the agriculture field effectively. In literature, this is a well studied

problem called the Vehicle Routing Problem (VRP) where the task is to distribute the total

demand of the job among multiple agents with their respective demands.

3.2 Problem definition

Given K clusters arranged in M ×N grid arrangement. Each cluster has a demand Dk. Given a

set of P heterogeneous agents with respective capacities as Cp, the optimal solution partitions the

clusters such that the demand of each cluster is met. However, it is always assumed that the sum

of capacities of the agents is always greater than the sum of demands. This problem is analogous

to the Capacitated Vehicle Routing Problem (CVRP). CVRP is NP-Hard and solutions to the

problem have been studied extensively studied in literature. Below is a formulation of CVRP.

3.2.1 Similarity to CVRP

Given a topological Graph G(V,E) where V = {1, 2 . . . n} and E = {(i, j)∀i, j ∈ V }. Let the

cost of travelling from a node i to j be denoted by cij . Let Q
k denote the maximum capacity of

13
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the vehicle. A decision variable Y k
ij decides if an agent k travels from node i to j. Where,

Y k
ij =

1 if k travels from i to j

0 if else
(3.1)

Then the Capacitated Vehicle Routing Problem can be posed as an optimisation problem.

min

N∑
i

N∑
j

K∑
k=1

cijY
k
ij

S.T
N∑
k=1

N∑
i=0

Y k
ij = 1 {j = 1 . . . n}

N∑
k=1

N∑
j=0

Y k
ij = 1 {i = 1 . . . n}

N∑
i=0

N∑
j=0

Y k
ij ≤ Qk ∀k ∈ {1, . . . n}

N∑
j=1

Y k
ij =

N∑
i=1

Y k
ij ≤ 1

(3.2)

The constraints here can be explained as

1. Customers can only be serviced once and only by one vehicle.

2. The total capacity along the route cannot the exceed the capacity of any vehicle.

3. All routes must start and end at the depot.

The problem of Multi agent-Multiple Cluster Coverage (MA-MCC) is similar to the CVRP after

constructing a topological graph using the centers of all clusters. The edges can be constructed

after considering collisions or using Nearest Neighbour based connections.

3.3 Related Work

Vehicle Routing Problem is NP-Hard and is an optimisation problem. As with optimisation

problems, there are Exact methods and Heuristic and Meta-Heuristic methods. In general, the

CVRP is solved in two steps. First assigning customers under different vehicles and then finding

an optimal path [1]. There exists exact solutions to the CVRP. In [2] talk about Branch-and-cut

algorithms for solving the CVRP. They show that the success of these recent exact algorithms is

effective combination of set partitioning formulations with families of cuts into column generation

based algorithms.
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Since the CVRP is a Combinatorial Optimisation problem, several heuristic methods have been

proposed. Genetic Algorithms have been extensively studied and used to solve the CVRP.

Recently, in [3] performs a study over recombination operators for the CVRP and propose a new

recombination operator called Best Route Better Adjustment recombination (BRBAX). In [5] a

Graph theoretic based approach is studied for deploying multi-agent systems over various nodes

over a graph. This uses a Voronoi partitioning based method to split the graph.

In recent times, Deep Reinforcement Learning based solutions have been proposed to solve VRP.

In [10] a single model is trained to find near-optimal solutions to the VRP sampled from a given

distribution. They show that their method out performs classical methods and Google OR-Tools

in medium scale instances. They also talk about extensions to other VRP based problems and

Combinatorial optimisation problems in general. In [6] Multi Agent Reinforcement Learning is

used to solve CVRP. They show that their method performs equally to Google OR-Tools but is

more adaptive.

3.4 Method

Given K clusters arranged in M × N grid arrangement, we construct a topological graph

Gτ (Vτ , Eτ ) where the vertices of the Graph are the centers of the clusters and the edges are

connected after considering collisions. We define the demand of each cluster Dk. Given P

heterogeneous agents with capacities Cp, we deploy a CVRP solver to partition the topological

graph thus obtaining the set of clusters each agent has to traverse. We then deploy our MCC

algorithm for each agent to traverse the clusters.

Algorithm 1 Multi agent Multiple Cluster Coverage

1: Vτ ← {µk|∀k ∈ K}
2: Eτ ← {(µi, µj)|∀i, j ∈ Vτ}
3: Gτ ← G(Vτ , Eτ ) ▷ Construct the Topological Graph
4: D ← {Dk|∀k ∈ K} ▷ Demands of clusters
5: C ← {Cp|∀pinP} ▷ Capacities of agents
6: Ξ← CVRP(Gτ , D,C) ▷ Graph partitioning
7: for ξ ∈ Ξ do
8: MCC(ξ) ▷ Multiple Cluster Coverage
9: end for
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3.4.1 Demand of a cluster

Demand of a cluster is important to define. Given the radius R and crown height H, two types

of demands can be constructed

1. Volumetric Demand: πR2H

2. Time Demand: 2πRH

3.5 Experiments

3.5.1 Setup

We compare the performance of Combinatorial Optimisation based CVRP solver from Google

OR Tools, Voronoi Graph Partitioning and Genetic Algorithm in a simulated environments that

mimic an agricultural field. We simulate a 5× 5 Grid arrangements of the centers to compare

the algorithms on Time taken to report a solution and whether the solution satisfies the demand

constraints.

We use the Genetic Algorithm formulation used in [3] along with the new BRBAX crossover

operator. The Voronoi Graph Partitioning used is shown in Algorithm

Algorithm 2 Voronoi Partitioning of Graph

1: G = (V,E)
2: P = {(pi, Li) ∀i ∈ R} ▷ All robot positions and capacities
3: gi ← ∅ ∀ri ∈ R
4: for v ∈ V do
5: if gi = ∅ then
6: ci, ri = Dijkstra(pi, v)
7: else
8: ci, ri = Dijkstra(gi[−1], v) ▷ Compute path from latest location
9: end if

10: while {ci, ri} ≠ ∅ do
11: c∗i = argmin({ci, ri})
12: if c∗i < Li then
13: gi ∪ {v}
14: Li ← Li − ci
15: break
16: else
17: Pop(ci, ri) ▷ Remove the cost and robot tuple
18: end if
19: end while
20: end for
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Figure 3.1: Solution to a 5x5 Grid arrangement of clusters split amongst 4 agents.

3.5.2 Results

Table 3.1: Comparision of Time taken to solve the CVRP problem

Algorithm T (s) Success rate (%)

CO - ORTools 0.234± 0.011s 99.98± 0.02
CO - Voronoi 0.531± 0.12s 76.81± 5.12
GA 4.573± 1.25s 40.73± 9.87

The results of the comparison can be found in the Table 3.1. We find that the CVRP solver from

Google OR Tools out performs other methods and is the most reliable. This is corroborated

across literature too. It is to note that the performance of the Genetic Algorithm heavily depends

on the hyper parameters and the choice of Crossover and Mutation functions.



Chapter 4

Conclusion

The problem of traversing Proximal points around a biomass in an Agricultural farm is analogous

to the TSP. We exploit the Grid arrangement commonly found in most Agricultural farms to

impose the following constraints and relaxations.

1. Any vertex in the Graph can be traversed more than once.

2. Any vertex can only be connected to two neighbours of the same cluster and one vertex of

other cluster.

3. Two clusters can be connected only by a predefined switching edge.

4. The agent is constrained to always switch at the switching edge

Using the following constraints, we convert the problem into a Graph traversal problem where

we construct a Graph using the Proximal points as vertices. We connect alternate vertices using

switching edges. We use a lexicographical key to select the next best vertex and traverse the

graph completely.

We compare our algorithm to standard TSP solvers and show that our algorithm produces

near-optimal solutions and uses less time to compute them.

We extend our Multiple Cluster Algorithm to using Multiple heterogeneous agents using existing

VRP solutions. We compare various available methods and find that the Optimisation based

method produces better results.

18



Appendix A

Graph Traversal Example

According to 2.18, for a given edge (i, j), the priority key is a combination of three parameters,

traversal cost, switching cost and distance cost. Traversal cost is used to discriminate between

vertices that are already traversed. Switching cost is used to prioritise switching vertices over

other vertices. Distance cost is used to select the vertex that is the closest.

In our implementation, every time a vertex is traversed, we add a traversal cost of 100 to itself.

If an edge is switching, we subtract 100 from switching cost. A Python implementation of

calculating keys is shown below

1 class Vertex:

2 def __init__(self , state):

3 self.state = state

4

5 # Costs

6 self.traversal_cost = 0

7 self.switching_cost = 0

8

9 self.isSwitching = False # or True

Listing A.1: Vertex Class definition

19
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1 class Key:

2 def __init__(self , k1 , k2 , k3):

3 self.k1 = k1

4 self.k2 = k2

5 self.k3 = k3

6

7 def __lt__(self , __ot):

8 if self.k1 < __ot.k1:

9 return True

10 else:

11 if self.k2 < __ot.k2:

12 return True

13 else:

14 if self.k3 < __ot.k3:

15 return True

16 else:

17 return False

Listing A.2: Key Definition and calculation

1 def get_next_vertex(vertex):

2 keys = []

3 for neighbour in vertex.neighbours:

4

5 if neighbour.isSwitching:

6 switchingCost = -100

7 else:

8 switchingCost = 0

9

10 traversalCost = neighbour.traversal_cost

11

12 distanceCost = distance(vertex , neighbour)

13

14 keys.append ([neighbour , Key(traversalCost , switchingCost , distanceCost ])

15

16 return sorted(keys , lambda x: x[1]) [0]

Listing A.3: Next Vertex Selection

Let us assume a scenario where we have 4 vertices of a cluster, namely a, b, c, d and another

vertex s from a different cluster. The vertex c is connected to the vertex s via a switching edge.

Now given that we are currently at the vertex b, the next vertex to traverse can be chosen by

constructing the corresponding Priority keys for each choice and using lexicographical ordering

to select the next vertex.
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The keys at vertex b

1. Edge (b, a) : [100, 0, 0.9]

2. Edge (b, c) : [0, 0, 0.75]

The Edge (b, c) is selected over the other edges.

Now, for the vertex c, the keys can be written as

1. Edge (c, b) : [100, 0, 0.75]

2. Edge (c, d) : [0, 0, 0.25]

3. Edge (c, s) : [0, -100, 3.75]

Here, since the Edge (c, s) is a switching edge, it is prioritised.



Appendix B

Analytical bound for Near Optimality

Figure B.1: Sample scenario consisting of four clusters approximated as circles.

Without loss of generality, let us assume that the clusters are circular in shape with radius ri.

Each cluster is connected to the other. Let us denote the shortest arc between the connections

from one cluster to another as ai where i denotes the cluster. The distance between one cluster

to another can be denoted as di,j . Let us assume that the agent starts from Depot and reaches

the first cluster. The distance between Depot to a cluster i can be denoted by Di. We also

assume that D1 < D4.

Now, according to Eq. 2.12, the cost of the path given the configuration above can be denoted

by

Cour =
∑
i

Ci+2
∑
i,j

Cij =⇒ (2πr1 +2πr2 +2πr3 +2πr4)+ 2 · (d12 + d23 + d34)+ 2 ·D1 (B.1)

22



Appendix B. Analytical bound for Near Optimality 23

Given the above configuration, the only other valid path is to cover a cluster completely and

traverse the shortest arc again to switch to a new cluster. The cost of the path can be given as

Cother = (2πr1 + 2πr2 + 2πr3 + 2πr4)+

(d12 + d23 + d34)+

(a1 + a2 + a3 + a4) +D1 +D4

(B.2)

Our algorithm produces near optimal solutions when Cour ≤ Cother.

∑
i

2πri + 2
∑
i

di,i+1 + 2 ·D1 ≤
∑
i

2πri +
∑
i

di,i+1 +
∑
i

ai +D1 +D4

=⇒
∑
i

di,i+1 ≤
∑
i

ai + (D4 −D1)

=⇒
∑
i

di,i+1 ≤
∑
i

ai

(B.3)

Hence, if the summation of distance between the clusters are less than the summation of extra

distance to cover, our MCC algorithm provides near-optimal solutions. However, this result is

not complete as the complexity of choices increases as the number and arrangement of clusters

varies.
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